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Abstract

Labeling video data is an essential prerequisite for many
vision applications that depend on training data, such as
visual information retrieval, object recognition, and human
activity modeling. However, manually creating labels is not
only time-consuming but also subject to human errors, and
eventually, becomes impossible for a very large amount of
data (e.g. 24/7 surveillance video). To minimize the human
effort in labeling, we propose a unified multi-class active
learning approach for automatically labeling video data.
The contributions of this paper include extending active
learning from binary classes to multiple classes and evalu-
ating several practical sample selection strategies. The ex-
perimental results show that the proposed approach works
effectively even with a significantly reduced amount of la-
beled data. The best sample selection strategy can achieve
more than a 50% error reduction over random sample se-
lection.

1. Introduction

The explosive growth of video sources has created new
challenges for the computer vision community. Many ap-
plications in computer vision, such as visual information
retrieval [1], object recognition [2, 3], and human activ-
ity modeling [4], require labeling/annotating of video data.
Manually labeling video data, however, is not only a labor
intensive and time-consuming task, but also subject to hu-
man errors. While much research has been focused on ac-
curate modeling and recognition from video, little attention
has been paid to labeling video data efficiently and robustly.
The goal of this research is to address the problem of man-
ual video data labeling by developing automated labeling
methods within an active learning framework.

In order to get a sense of the difficulties in manually
labeling video data, let us consider a problem in geriatric

care. Studies indicate that nearly 90% of patients with de-
mentia may exhibit observable agitation, behavior that can
be classified as disturbed (a psychiatric or medical condi-
tion requiring pharmacological intervention) or disturbing
(socially inappropriate behavior that may just be a means
of expressing a need). To interpret behavior appropriately
or assess why particular behaviors occur, we can use video
cameras to monitor patient activities and then analyze video
data. Figure 1 depicts examples of such video data taken
from multiple locations in a geriatric care center. In order
to enable the geriatric care specialist to address situations
more accurately and intervene appropriately, we need to
create an analysis system that extracts the required data and
highlights behaviors of interest. For example, if a special-
ist would like to observe the behavior of patient A, he/she
needs to extract all the frames associated with that patient.
To do this, the specialist needs a labeled video sequence
where all people have been identified with a label. Sup-
pose we record video at 30 frames/second. For only one
camera, we would obtain 259200 frames/day. Manually la-
beling these data on a frame by frame basis is virtually im-
possible.

Figure 1. Examples of video data captured
from a geriatric care center, where we need
to identify different people.
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These difficulties encourage us to develop methods to
semi-automatically label video data with less human effort.
In fact, many techniques can help to reduce the amount of
data to be labeled. Consider the task of labeling people
based on identity in the geriatric care video shown in fig-
ure 1. Many cues, such as face [2], voice [5], and gait [3]
can be used to automatically identify people, although not
all the modalities are feasible for this data. Among them,
color appearance is the only robust cue for identifying peo-
ple [6] in this application. This transforms the problem into
one of building color appearance models and automatically
labeling people using these models. However, we still need
some labeled data for training these models. One possible
solution is to ask a human to label some randomly selected
data, and automatically propagate the labels to the entire
collection using a supervised learning algorithm. A better
approach would be to select non-random examples which,
if labeled, will provide the most information for the learn-
ing algorithm. To determine when we stop labeling, we find
that it is a subjective judgment with respect to each applica-
tion as to what accuracy is sufficient and how many labeled
examples are needed to reach this accuracy. This motivated
us to develop and adapt an incremental learning framework
with interaction/supervision from a human. This framework
is known as active learning.

In this paper, we propose a unified multi-class active
learning approach to minimize human effort in labeling
video data. One of our contributions is that we extend the
active learning approach from binary classes to multiple
classes, which enables the learning algorithm to select the
most informative unlabeled data for all the classes instead
of just the binary classes. As well as providing a theoreti-
cally optimal criterion, we also propose and evaluate several
practical sample selection strategies. The experimental re-
sults indicate that our multi-class active learning approach
works effectively even when the amount of labeled data is
significantly reduced. The best sample selection strategies
can yield a more than 50% error reduction over random
sampling.

2. Problem Description

Typically, the task of automatically labeling video data
is to associate unlabeled examples with a single label. For
instance, in the task of labeling people’s identity, the re-
gions extracted by a people tracker can be thought of as
the unlabeled examples, and the people’s identities are the
labels. This task can be formulated as a multi-class clas-
sification problem, where each example is associated with
one of the given classes. Let X denote the domain of pos-
sible examples, Y be a finite set of classes and k be the size
of Y . Formally, the learning algorithm takes a set of train-
ing examples (x1; y1); :::; (xm; ym) as input, where yi 2 Y

is the label assigned to example xi 2 X . Typically, the
goal of classification is to produce a real-valued hypothesis
f : X �Y ! R where f belongs to some hypothesis space
F.

The effectiveness of active learning to reduce labeling
cost has been demonstrated by previous work [7, 8, 9, 10].
Active learning, or called pool-based active learning, is
an interactive learning approach in which the learner has
the freedom to select which unlabeled examples should be
added into the training set. An active learner may begin
with a pool of unlabeled data, select a set of unlabeled ex-
amples to be manually labeled as positive or negative and
learn from the newly obtained knowledge repetitively. This
type of problem can also be called ”query learning” [7].
Formally, an active learner l has three major components
(f; s;D) [10] with an unlabeled pool P . The first compo-
nent is the classifier f(x), trained on the labeled data set D.
The second one sD(P) is the sample selection function that
selects the most informative examples in the pool P given
the training data D. Compared with a supervised learning
approach, the additional component of active learning is the
sampling function sD(P). One of the major tasks for ac-
tive learning is to determine the sample selection function,
which will be discussed in the following section.

3. Multi-Class Active Learning

We present a unified multi-class active learning frame-
work in this section. In the following discussion, we
pay particular attention to learning algorithms that attempt
to minimize a margin-based loss function, called margin-
based learning algorithms [11]. This includes a large family
of well-studied algorithms with different loss functions and
minimization algorithms, such as decision trees, logistic
regression, support vector machines(SVM) and AdaBoost.
The margin-based learning algorithms always minimize the
loss function with respect to the margin, which is

1

m

mX
i=1

L(yif(xi)); (1)

where L is some loss function L : R ! [0;1). With-
out particularly concerning specific learning algorithms, the
generalized loss function representation allows us to present
more general results as discussed below.

3.1. Output Coding for Multi-Class Classification

Since most margin-based learning algorithms were orig-
inally devised for binary classification, the challenge is to
extend them to multi-class classification. Several solutions
have been proposed to address this issue, in which each
class is compared against all others, or in which all pairs of
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classes are compared to each other, or in which the output is
handled with error-correcting output coding(ECOC) [12].
To generalize these approaches, Allwein et al. [11] have
proposed a unified approach for decomposing multi-class
problems into a set of binary-class problems. To illustrate,
we can represent each decomposition by a coding matrix
M 2 f�1; 0;+1gk�l, where k is the number of classes and
l is the number of binary classification problems. Mrs = 1
indicates that the examples in the class r are considered as
positive examples for classification problem s. Similarly,
for classification problem s, if Mrs = �1 the examples in
the class r are considered negative example, and if Mrs = 0
we don’t care how the learner categorizes the example in the
class r. For instance, for one-against-all approach, M is a
k � k matrix with diagonal elements 1 and others -1.

Orthogonal to the problem of coding matrix selection,
the learning algorithm has to assign examples to a predicted
class ŷ = 1; :::; k given the labels provided by binary clas-
sifiers. Allwein et al. [11] suggest two types of coding
schemes to fuse the predictions: Hamming decoding and
loss-based decoding. Let Mr be row r of M and let f(x) be
the predictions for an example x for multiple binary learn-
ing algorithms, f(x) = (f1(x); :::; fl(x)). Therefore, the
distance measure of Hamming decoding is

dH(Mr; f(x)) =

lX
s=1

�
1� sign(mrsfs(x)

2

�
: (2)

To take advantage of the confidence of binary predic-
tions, they also proposed a loss-based decoding scheme

dL(Mr; f(x)) =

lX
s=1

L (mrsfs(x)) ; (3)

where L is a loss function for both decoding schemes. The
predicted label ŷ, therefore, is computed as

ŷ = argmin
r

d(Mr; f(x)):

Hamming decoding has been shown to be less effective
in classification than loss-based decoding, and thus we use
loss-based decoding to combine the predictions of binary
classfiers. Several choices of the loss function are possible
and it is not clear which works best. Allwein et al. [11] pro-
posed to set L as the same loss function used by the learning
algorithm, which is the strategy we adopted in our experi-
ments.

3.2. Optimal Multi-Class Active Learning

As mentioned before, one of the most important com-
ponents in active learning is the sample selection function
which selects a set of informative examples to label. The

optimal active learner is an active learner that always asks
for labels of those unlabeled examples which, once incor-
porated into training set, will lead to the lowest expected
generalization error. However, for a margin-based learn-
ing algorithm, it is better to optimize the loss functions di-
rectly [11]. Therefore our goal is to search for the unlabeled
examples which can minimize the expected loss on the data
set.

Let P (yjx) be the conditional distribution over an ex-
ample x, and P (x) be the marginal distribution of x. The
learner has been given a labeled training set D, and output
a set of estimated loss dL(My; f

D(x)) for every x in the
pool P . We denote dL(My; f

D(x)) as dL(fD) for the sake
of simplicity in the following discussion. We can then write
the expected risk function of the learner as follows,

R(fD) = ExEyjx(dL(f
D)) =

Z
X

X
y2Y

dL(f
D)P (yjx)P (x)dx:

A multi-class active learner has to select a set of unla-
beled examples, or query setD+ from the pool and ask a hu-
man for their labels. After every example x�i in D+ is given
labels y�i 2 Y and added in the training set, an updated
learner will be trained on the training set D� = D _ D+.
The optimal learner can choose the optimal query set D+

opt

so that the updated learner should have the lowest risk,

D+
opt = argmin

D+
R(fD

�

) = argmin
D+

R(fD_D
+

)

or the largest risk reduction,

D+
opt = argmax

D+

�
R(fD)�R(fD

�

)
�
: (4)

Because it is rather difficult to estimate the expected risk
over the full distribution, P (x), it is more feasible to mea-
sure the risk over all the examples in the pool. Therefore,
for the expected risk before selection we have

R(fD) =
1

jPj

X
x2P

Eyjx(dL(f
D)) (5)

and for the expected risk after selection

R(fD
�

) =
1

jPj

X
x2P

Eyjx(dL(f
D�

)): (6)

By substituting the equation (5) and (6) into (4), the min-
imization function becomes

R(fD)�R(fD
�

) =
X
x2P

Eyjx(dL(f
D)� dL(f

D�

)): (7)

In theory, the maximization of (7) straightforwardly
leads to the optimal query set D+. Unfortunately, in prac-
tice, it is intractable to compute all the 2jPj�jDj possi-
ble combinations even in one round, not to mention se-
lecting unlabeled examples iteratively. One of the feasi-
ble solutions is to select only one unlabeled example each
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time, such that the choice of examples greatly reduces
to jPj � jDj. Plus, many learning algorithms like SVM
and Naive Bayes have efficient algorithms for incremental
learning [13]. Some recent work has demonstrated how to
efficiently optimize the expected loss function in the active
learning paradigm [14]. However, in this paper we will not
go into further details on this direction.

3.3. Approximated Sample Selection Strategies

In this section, we describe several practical sample se-
lection strategies as alternatives for optimal multi-class ac-
tive learning. As noted before, our task is to infer a new
set of examples D+ to add into the training set, which min-
imizes the expected generalization risk. It is computation-
ally intensive to maximize (7) by re-learning the classifiers
to estimate the new expected risk. We do not want to go
through all the possible combinations for D+ before pick-
ing out one query set. Moreover, because typically only a
small number of labeled data are available for training, the
estimation for P (yjx) might be unreliable. To make multi-
class classification more practical, we will use some simple
heuristics to simplify our selection strategies.

To re-learn the classifiers for each possible data combi-
nation in the pool becomes one of the major computational
burdens in maximizing (7). Therefore, our first goal of the
approximation is to eliminate the components that have to
be reestimated after adding additional data, which is the pre-
diction function f(D�). To this end, we seek to reduce the
computational cost based on two approximations as follows.

Starting from (7) and substituting the P with D+, we
obtain

D+
opt = argmax

D+

X
x2D+

Eyjx(dL(f
D)� dL(f

D�

)): (8)

An intuitive explanation for this approximation is that if an
optimal data set D+ can be found to maximize (8), it can
always pick out the most ambiguous examples in the pool,
and thus yield the largest expected risk reduction over the
entire collection. A similar assumption proposed by [7]
suggests that all expected losses for any x in PnD+ have
an equal influence.

Next, if approximating the difference dL(fD)�dL(fD
�

)
in the prediction of dL(fD), we have

D+
opt = argmax

D+

X
x2D+

Eyjx(dL(f
D)): (9)

This approximation is based on the observation that the
learning algorithm trained on D� can always provide the
correct prediction for any x 2 D+. The reasons are
twofold. First, in the active learning problem, training data
is always sparse especially at the initial stage, while the fea-
ture space often has a large number of dimensions. Sec-
ond, for some kernel machines like SVMs, it is possible to

modify the kernel function such that the training data in the
new feature space can be linearly separated [10]. There-
fore, for every x 2 D+, EyjxdL(f

D�

) is much smaller
than EyjxdL(f

D), which makes it reasonable to ignore the
dL(f

D�

) in (8).
So far, the components that have to be relearned fre-

quently are completely removed in (9). To further simplify,
we can rewrite (9) into the following equation which maxi-
mizes the expected risk for only one example,

D+ = argmax
x

Eyjx(dL(f
D)): (10)

Substituting (3) into Eyjx(dL(f
D)) in (10), we get

X
y2Y

lX
s=1

P (yjx)L(mysf
D
s (x)) (11)

=
X

t=�1;0;1

lX
s=1

P (mys = tjx)L(tfDs (x)); (12)

where P (mys = tjx) stands for
P

y2Y;mys=t
P (yjx). Note

that P (mys = 0) = 0 for the coding matrices that do not
have the element 0, such as the one-against-all coding ma-
trix.

Finally, we come to the issue of providing a better prob-
ability estimation for the conditional probability P (yjx).
Since the estimation of the true distributionP (yjx) depends
on labeled examples, we will estimate it using the training
set D. However, the classification confidence presented in
the loss function is not the posterior probability, so we can
not straightforwardly treat the confidence as the estimation
of P (yjx). To compute (12), it is necessary to normalize the
output of confidence into the output of the posterior proba-
bility. Two probability estimation models can be suggested:

Uniform Guess In this case, the class-conditional proba-
bilities are assumed to be completely unrelated to the
labels on the data, that is, P (mys = 1jx) = P (mys =
�1jx) for all the examples. In the case of P (mys =
0jx) = 0, the probabilities P (mys = �1jx) are fixed
to the constant 1=2. Therefore in this case, the prob-
abilities P (mysjx) can be removed from (11), which
then becomes

argmax
x

X
t=�1;1

lX
s=1

L(tfDs (x)): (13)

However, the assumption of uniformness may only
work at the initial stage of training, where the estima-
tion only has little to do with the actual labels. But
later when the classification confidence of fs(xi) is ex-
pected to be positively correlated to the label y i, this
uniform guess assumption will always fail.
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Best Worst Case The best worse case model has been sug-
gested in several papers [9, 7]. This model approxi-
mates the expected loss function with the smallest loss
function among all the possible labels. It implies that
the loss function can be expected to be small since the
most confident labelling will be most likely to be cor-
rect. Thus (11) can be rewritten as

argmax
x

min
y2Y

lX
s=1

L(mysfs(x)) (14)

or let yx be the predicted label for example x,

argmax
x

lX
s=1

L(myxsfs(x)): (15)

The reasoning for this model is to choose the most am-
biguous examples with the maximum expected loss for
the predicted label. In the case of l = 1 where only
binary classes are predicted, this strategy can be re-
duced to the problem of choosing the example x with
maxx L(y; f(x)). This can be interpreted as selecting
the examples closest to the decision boundary, which
is a common sample selection criterion in binary active
learning tasks [10].

4. Related Work

One of the first statistical analyses was proposed by
Cohn et al. [8]. They demonstrated how to construct op-
timal queries by minimizing the active learner’s variance.
But it turns out to be difficult to compute a closed form solu-
tion of the expected variance for most complicated learners.
Roy et al. [14] presented an optimal active learning algo-
rithm by directly minimizing the learner’s expected error on
the new test examples. A set of computational optimization
techniques makes the algorithm much more practical.

Apart from estimating the expected generalization er-
ror, another widely used method for the active learning is
to optimize a different, non-optimal criterion. Query-by-
Committee (QBC) [15] chooses the instances to be labeled
that have maximal disagreement among the individual clas-
sifiers. In order to achieve the highest information gain, the
examples selected by this approach split the version space
into two parts of equal size. More recent work [10] ex-
tends the QBC approach to Support Vector Machines active
learning for a text classification task. For each query, they
estimate the reduction of the version space size for each un-
labeled example in the pool. Similar to QBC, the examples
that most reduce the version space size are chosen as the
next query.

However, many of these early studies focused on the bi-
nary classification problem. Surprisingly, few of them men-

tion selection strategies in the context of multi-class classi-
fication. One of the most relevant papers to our approach
was done by Tong et.al [16]. Viewing the multi-class clas-
sification problem as an extension of the binary case, they
propose a simple heuristic to select the next unlabeled ex-
ample that minimizes the maximum model loss

x = argmin
x

max
y

Y
i

Area(V(i)x;y): (16)

By approximating the size of the version space
Area(V

(i)
x;y) with (1 + yifi(x))Area(V

(i))=2, the heuristic
becomes

argmax
x

min
y

X
i

log

�
1

1 + yifi(x)

�
; (17)

where yi is 1 if label y for instance x is class i, otherwise -1.
By comparing (17) and (14), we can show that this heuris-
tic is a special case of our best worst case model with loss
function log 1= (1 + x).

5. Results

In this section, we describe the experiments on creat-
ing labels for identifying people in geriatric video data
and demonstrate the effectiveness of our multi-class active
learning approach. For the sake of simplicity, we simulated
the human labeling process using complete, true data labels
without actually asking a human for the labels at each step.

5.1. Experimental Setting

The training data was extracted from a 6 hour long, sin-
gle day and single view geriatric nursing home video, which
was sampled at a resolution of 320 � 240 and a rate of 30
frames per second. Many people contained in the video
are partially occluded and there are large variations of the
lighting environment. For testing purposes, the noise from
background had to be removed. We automated this process
using a background subtraction people tracker, which out-
puts a set of people images. Every image corresponds to the
extracted silhouette of a moving person.

From the images generated by the tracker, we sampled a
training image collection which included 11 people/classes
of interest. In this experiment, we only considered images
that did not have any foreground segments containing two
or more people. Also, only images where the size of the
foreground was larger than 2% of the screen size were kept
in our collection, which is reliable for color histogram com-
putation. Finally, over 1,000 single-person images were
collected and manually labeled with one of the 11 given
classes.
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Since a color histogram is relatively insensitive to the
variations of the target appearance due to viewpoint and oc-
clusion [6], we represent the images using a histogram of
various color spaces in the following experiments. Though
only color feature is considered in this paper, our approach
can also be in principle extended to more features such
as texture, shape and gait features, which have their own
strength and weakness in the human prediction.

5.2. Multiclass Active Learning Results

Constructing an effective active learner is dependent on
several factors, including choosing a well-suited binary
classifier, loss function, coding matrix, probability estima-
tion scheme and sample size per run. In this section, we will
investigate how each factor can affect the performance of a
multi-class active learner.

The first series of experiments was designed to verify
the contrastive performance of various classifiers and color
spaces. In this experiment, we split the image collection
into halves. The first 50% of the image collection were
used as training data and the remaining 50% were used
as test data. For each image, a color histogram was gen-
erated in both the RGB(Red-Green-Blue) and HSV(Hue-
Saturation-Value) color spaces [17], where each color chan-
nel had a fixed number of 32 bins. Thus we have a total of
96 one-dimensional features for both color spaces. Table
1 shows the misclassification rate for the following classi-
fiers: k Nearest Neighbor with L2 distance (kNN L2), k
Nearest Neighbor with �2 distance(kNN �2), Linear SVM
(LSVM), Radial Kernel SVM with � = 0:01 (RSVM) and
�2 kernel SVM with � = 0:01 (SVM �2) 1. As antici-
pated, SVM �2 achieves the best performance followed by
kNN �2, indicating that the �2 distance is the best suited
distance metric for histograms of color features [17]. The-
oretically, HSV space can be considered to be more suitable
than RGB space for image classification since it is less sen-
sitive to change in illuminance. But in practice this issue
seems to be minor. The performance of the RGB space is
close or even superior to the HSV space for some classifiers
such as kNN�2. Again, this observation is consistent with
previous work [17]. In our following experiments, the � 2

kernel SVM in HSV color space was chosen as our base
classifier due to its top performance.

We evaluated the performance for the parameters of the
multi-class active learning approach. Initially, our training
data consisted of the first 21 images in the image collection,
which contained at least one example for each class. For
each run, the active learner selected 10 more unlabelled data

1k is set to 1 which achieves the best accuracy for any k, 1 � k � 5.
More details about SVM classifiers and �2 kernel can be found at [17].
Note that although some of the classifiers are not margin-based classifiers,
we listed them here for the purpose of comparison

kNN L2 kNN �2 LSVM RSVM SVM �2

HSV 0.152 0.142 0.195 0.144 0.107
RGB 0.125 0.109 0.242 0.115 0.103

Table 1. Misclassification rate for different
classifiers in RGB/HSV color space with
50%/50% training/testing splits
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Figure 2. Comparison of classification errors
of five different loss functions all using the
best worse case model and the one-against-
all coding scheme.

points to label. The learning process iterated for 3 runs and
ended up with 51 training examples. The remaining data in
the collection was then tested. We first experimented with
the effects of different loss functions and coding matrices.
As suggested by Allwein et al. [11], we used (1 � y)+
loss function to predict the class labels for SVM classifiers
and computed the expected loss functions with (15). The
best worst case model was employed to predict the class-
conditional probability. We considered the performance of
five different types of loss functions: the exponential loss
e�x (EXP), the L1 loss 1=(1+ e2yf(x)) (L1), the loss func-
tion (1� y)+ ((1� y)+) as well as the minimal margin loss
function (MinMG) 2 e�100x. As a baseline, a random loss
function was also tested where the active learner randomly
selected the unlabeled examples to label. In the future, we
plan to study the effects of various other coding schemes.
In this work, we experimented with four types of coding
matrices, that is, one-against-all(1-vs-r), ECOC with 15bit
BCH code(BCH15), ECOC with the first 15 bits of 63bit
BCH code(BCH63) and pairwise coding.

The results in table 2 indicate that except pairwise cod-
ing most of the loss functions can greatly reduce the error
rate compared with the baseline, i.e. the random loss func-
tion. We conjecture that the worse performance of pairwise

2We call this minimal margin loss function because
P

i
e�100xi �

e�amini xi
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MinMG EXP L1 (1� y)+ MinMG Random

1-vs-r 0.135276 0.101977 0.110302 0.086368 0.111342 0.133195
BCH15 0.096774 0.08949 0.081165 0.057232 0.104058 0.122789
BCH63 0.072841 0.099896 0.121748 0.087409 0.090531 0.134235
Pairwise 0.126951 0.186264 0.173777 0.186035 0.164412 0.125099

Table 2. Misclassification rate for different loss functions and coding matrices in multi-class active
learning. All training data was limited to a maximum of 50 training examples.
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Figure 3. Comparison of classification errors
from the best worse case model and the uni-
form guess model with a (1�y)+ loss function
and a one-against-all coding scheme.

coding is due to insufficient training data of each class. The
5.7% error rate obtained by the loss function (1 � y)+ and
BCH15 coding represent a more than two-fold error reduc-
tion. For the coding matrix, BCH15 achieves the lowest er-
ror rate, and generally the ECOC coding scheme can reduce
classification error by 2%-3% . Taking a closer look at how
the active learner behaves when the training data size in-
creases, we plot the curve of the misclassification rate with
different loss functions as a function of the training data size
in figure 2. The active learner selects 10 unlabeled exam-
ples per run iteratively until it reaches 90 training examples.
We observe that the classification error always decreases
when more training data are added. But the loss function
of (1 � y)+ and EXP converge faster to their best perfor-
mance, in other words, the active learner with these two loss
functions can achieve better performance with fewer train-
ing examples than the others.

To avoid an explosion of loss functions and coding
scheme combinations, we restricted the loss function to be
(1 � y)+ and the coding scheme to one-against-all in the
following experiments. Again, we ran the active learner un-
til it had more than 90 training examples. In figure 3, we
compare the performance of best worse case model with
uniform guess model. Since the uniform guess model can-
not pick out informative examples to label, it is unable to
improve the classification performance by getting more la-
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Figure 4. Comparison of classification errors
from different sampling sizes per run with the
best worse case strategy, (1 � y)+ loss func-
tion and the one-against-all coding scheme.

bels. Surprisingly, its performance is worse than the random
loss function in the best worse model. This underscores the
importance of a proper probability estimation model.

The last experiment was designed to assess the perfor-
mance of the sampling size per run. All the active learners
began with 21 training examples and stopped at the point
of reaching 90 training examples. The classification errors
are presented in figure 4 with 5, 10, 15, 20 samples per run.
Roughly speaking, lowering the sampling size per run im-
proves the accuracy for the active learner. A partial expla-
nation is that it is more flexible and effective for the active
learners to control two rounds of 5 examples than one round
of 10 examples.

6. Conclusion

Dealing with vast amounts of unlabeled data is a grow-
ing problem in computer vision. In this paper, we proposed
a unified multi-class active learning framework in order to
reduce the human labeling effort. Our experiments demon-
strate that an active learner with careful sample selection
can achieve remarkably good performance (5.7% labeling
error) with much less human labeling effort (50 examples,
which translates into only 5% of the labeling effort) com-
pared to supervised learning. Also, an active learner with
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the proposed sample selection strategies can do much bet-
ter than one with only a random sampling strategy, which
yields an over two-fold error reduction.

Note that in some cases, the test set might have some
data with new labels which do not exist in the training set.
This makes the learning problem even harder due to the
open label set. We suggest introducing a new ”null” label
to handle all the objects with unseen labels in the test set
and feeding them back to users to label. Another promis-
ing avenue for future work is to extend our experiments to
multiple day, multiple camera view and multi-person video
data with more discriminative features. Moreover, as an al-
ternative of manual labeling, the labels can be obtained from
different types of multi-modal information, like face recog-
nition and speaker identification. It would be interesting to
study how to fuse these different types of information into a
multi-class active learning framework. We plan to explore
these extensions in the future.
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